
International Journal of Computer Trends and Technology Volume 69 Issue 10, 1-11, Oct, 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I10P101 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Multiple Inheritance Mechanisms in Logic Objects

Approach Based on Multiple Specializations of

Objects

Macaire Ngomo

CM IT COUNCIL – Engineering and Innovation Department – 32 rue Milford Haven 10100 Romilly sur Seine, France

Received Date: 03 September 2021

Revised Date: 04 October 2021

Accepted Date: 15 October 2021

Abstract - This study takes place within the representation of

knowledge by objects and, particularly, within the

framework of our work on the marriage of logic and objects.

On the one hand, object-oriented programming has proved

to be appropriate for constructing complex software

systems. On the other hand, logic programming is

distinguished by its declarative nature, integrated inference,

and well-defined semantic capabilities. In particular,

inheritance is a refinement mechanism whose mode of

application leaves a number of design choices. In the context

of this marriage, we describe the semantics of multiple

inheritances in a non-deterministic approach based on

multiple specifications of logical objects. We also describe

the conceptual choices for integrating multiple inheritances

made for the design of the OO-Prolog language (an object-

oriented extension of the Prolog language respecting logical

semantics).

Keywords — Object-oriented logic programming, Object-

oriented representation, Multiple inheritances, Multi-point of

view, The semantics of multiple inheritances.

I. INTRODUCTION
Inheritance is a refinement mechanism whose mode of

application leaves a number of design choices. In this article,

we describe the semantics of inheritance [11, 12] in a non-

deterministic approach as well as the conceptual choices of

integration of monotonous multiple inheritances made for the

design of the OO-Prolog language (an object-oriented

extension of the Prolog language respecting logical

semantics) [72-79] as well as its application to the dynamic

classification by multiple specializations of logical objects.

Our work concerns the multiple and evolutionary

representation of objects that supports reasoning by

classification [52-58, 95-98, 14, 17, 21, 24, 30, 35, 68, 70].

This representation must therefore allow a dynamic

classification of logical objects and follow classificatory

reasoning. Reasoning by classification consists of finding the

most specialised class or category to which an object belongs

and retrieving knowledge related to this location.

The inheritance management model of the OO-Prolog

language is based on the non-determinism of logic

programming, explicit naming, and full attribute naming,

which allows conflicts to be resolved before they arise. The

OO-Prolog language adopts a dynamic inheritance for both

attributes and methods. This is a difference with classical

models such as the ObjVLisp model from which it was

inspired. Let us recall that ObjVLisp makes a static

inheritance of the instance variables, which results in the

flattening of the inheritance graph regarding the state of an

object. The result is that an object in ObjVLisp is a vector of

instance variables where all inheritance information has

disappeared.

II. THE OBJECT PARADIGM AND ITS

DIMENSIONS

 The paradigm of object-based programming, born with

Smalltalk [37] at the end of the 1970s, has become very

popular: object-based languages, object-based represent-

ations in artificial intelligence, object databases, object-

based design in software engineering, etc. The paradigm of

object-based programming is now being used in many

different fields. It gives great power of expression, ease of

maintenance, and reusability superior to other paradigms:

imperative (example with C), functional (example with LISP

[89, 90]) or logical (example with PROLOG [88, 91, 90]),

etc. However, it requires a greater capacity for abstraction

than imperative or functional programming to choose the

"objects" to be reified and to define inheritance and

composition between classes in a meaningful and coherent

way.

The main dimensions of the object paradigm, which are

classification, inheritance, which introduces the notions of

generalization and specialization, encapsulation and

polymorphism (generic functions), were brought together for

the first time in Smalltalk 76 [37], although the ideas of class

and instance, and inheritance had matured with SIMULA

[23]. Classes were seen as objects, created by metaclasses, in

the object languages created above Lisp, then in Smalltalk

http://www.internationaljournalssrg.org/

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

2

80 [37], and this vision was taken up again in Java where

everything is an object, the elements of world representation,

the elements of graphical interfaces, but also the elements of

the language like functions, classes, events, errors, and

exceptions. The composition was later added as an

autonomous dimension with UML and in modern languages

such as Java.

A. Encapsulation
In the object paradigm, encapsulation concerns

grouping variables and functions into classes and classes and

interfaces into packages. Classes, functions, and packages

are also namespaces that ensure uniqueness within the

names of the elements that compose them. From the outside,

it may be necessary to prefix the names of imported public

elements by the name of the class or package from which the

referenced element comes (or by this or by super).

Encapsulation ensures the grouping in the same elements

(classes or packages) of lower-level elements strongly linked

to each other and ensures the protection and partial visibility

of the elements outside. Encapsulation ensures the

independence between the layout of a class, a function, a

package, and how it is presented in relation to the other

objects using it. The public presentation ensures that a

contract will bind that element about what it does, but not

how it does it, which is the responsibility of its implantation.

Therefore, it can be changed without affecting the operation

of the other elements that use it, for example, to change

internal variables or the algorithms used. The encapsulation

and the levels of access (private, public...) to which it gives

rise facilitate the reusability of software elements and the

evolution of the software.

B. Inheritance
The organization of classes in specialization hierarchies

makes it possible to create complex classes from more

general classes by refining the general description. A

subclass is built from another class by adding members or

restricting members existing in the other class. The

mechanism by which a class retrieves information inherited

from its superclasses is called inheritance. Inheritance is,

therefore, a mechanism for sharing information by factoring

in members. Inheritance between classes allows the reuse of

the structures or behaviors introduced and facilitates

updating, avoiding duplication of information. When several

classes have common characteristics, it is possible to create

a more general classifier that groups together these

structures (classes) or behavior (interface) properties. It

reduces the need to specify redundant information and

simplifies updating and modification because it is located in

one place. Inheritance makes it possible to infer all the class

members not explicitly given there by searching for them in

the higher classes (ancestors) from the most refined to the

most general. This inference mechanism comes back to an

algorithm for browsing the class graph according to a

defined strategy.

Inheritance has long been seen as an inheritance of

structure first and behavior second. This is no longer the

case with Java and UML, which distinguish two forms of

inheritance: class inheritance is an inheritance of structures

and behaviors, interface inheritance is only an inheritance of

behaviors. An inherited class is generally an abstract class

with no instance but constitutes an algebraic structure (a

structure with operations). You can have as many levels of

inheritance as you want. When a class inherits from a more

abstract class, it inherits its attributes and its operations or

methods.

 Multiple inheritances extend the simple inheritance

model where one class can have several parent classes to

model multiple generalizations. An object can be considered

from several points of view, so we have to consider multiple

inheritances. For example, the cathedral of Notre-Dame de

Paris is both a work of art and worship. Care must be taken

to avoid homonymy, which should not mix two structures

instead of giving them two different names. At first glance,

it seems that one class can inherit from several classes

because an object can have several parts, and the object has

attributed the properties of its parts (metonymy). However,

only the question of points of view corresponds to

inheritance because if an object is composed of several parts,

it will be constructed by a compositional mechanism. It is

legitimate to describe a class that inherits from several

classes; if the programming language does not allow

multiple inheritances, the problem will have to be solved at

the implementation stage.

The use of multiple inheritances is not without its

problems. For example, naming collisions need to be

resolved if the two base classes have attributes or methods

with the same name. In programming, managing multiple

inheritances of structures is a difficult problem because if

inheritance causes a conflict over attributes, you have to

rename an attribute in one of the classes or see the design

error that causes the conflict. If inheritance causes a conflict

of methods, a conflict resolution strategy, i.e., a choice or

combination procedure as in CLOS [6, 22, 43], should be

used. This is why some languages such as Smalltalk or Java

prohibit multiple inheritances of structures. Some languages

prefix the name of the attribute by its class of origin. If

multiple inheritances are allowed, it is not advisable to do

multiple inheritance on several levels. It is better to do it

only for instantiable classes and that these classes are not

inherited. The notion of an interface in Java avoids using

multiple inheritances for classes while allowing the

inheritance of behaviors. An interface only defines static

constants and declares abstract methods. It represents a

promise of services. There can be multiple inheritances

between interfaces, and a class can implement several

interfaces without conflicts since no instance variable or

method is defined.

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

3

We will come back to this dimension to describe the

conceptual choices of integrating multiple inheritances made

for the design of the OO-Prolog language and the strategies

for resolving inheritance conflicts.

C. Polymorphism

Polymorphism is that several functions can have the

same name if they do the same thing on different objects.

The function is then said to be generic. The form in which a

function is called does not completely determine the function

that will be executed since functions are generic: they only

define a contract on how they behave. Their call parameters

have a type that will select the concrete function that will be

executed. And therefore, the same function call can trigger

different methods depending on the objects passed to it. Even

if the variables have a type, several classes of objects can

correspond to this type because of inheritance between

classes and between classes and interfaces, and the object

will execute the method defined in the most specialized class

of which it is a part. A generic function call must first resolve

the question of which method applies and then apply the

method to the call's arguments. In some cases, the decision

may be made statically, once and for all, and the method call

at compile-time may replace the function call. In other cases,

the same call may correspond to objects of different types,

and resolution can only be done at runtime.

D. The Composition
When an object is composed of several parts, it is

constructed by its parts because variables will reference not

attributes of the object but parts of the object. The object's

behavior can be distributed on its parts and accessible by

calling methods on the parts from the object via its variables.

III. INHERITANCE SEMANTICS
Almost all object languages implement a notion of

inheritance between classes. As we have just seen, the

principle is to specialize and factorize. This allows

knowledge to be shared efficiently to obtain, on the one

hand, a more compact code and, on the other hand, a finer

representation of the problem to be solved. Therefore, the

programming of an application in these languages will

consist of grouping the most general information into

classes that are then specialized step by step into sub-

classes implementing more specific behaviors. The classes

are organized in an inheritance graph which allows us to

visualize the links between them. However, inheritance is a

refinement mechanism whose mode of application leaves a

certain number of design choices. In particular, the mode of

composition of the properties must be defined. To do this,

we are faced with two design choices: the semantics of

inheritance [11, 12] and the path strategy of the inheritance

graph, i.e., the order in which the classes will be

considered.

In this section, we come back to this concept of

inheritance to describe its semantics and the choices that

were retained for the conception of the OO-Prolog language.

The traditional definition of inheritance presupposes non-

monotonous semantics in the composition of the different

inherited classes. This means that when a subclass redefines

a method, for example, this redefinition replaces or hides the

definition already given in the overclass. Thus, if an instance

of this class receives a message which must be answered by

executing this method, the definition of the subclass will be

executed. In practice, a mechanism is often provided to

override this. This is, for example, sending a message to

super in Smalltalk-80, which explicitly designates the

definition in the classes above.

Several languages and models are based on this

inheritance model. In these languages, the semantics of

inheritance is non-monotonic. Generally, these languages use

the same strategies as those of common object languages,

such as the linearization of the classes of the inheritance

graph. Examples are ObjVProlog [48-50] and Prolog++ [66,

47]. Others support multiple inheritances and offer no means

of resolving conflicts (e.g., the systems of Kowalski [44, 45]

and Zaniolo [94]).

Gallaire [32], Leonardi, and Mello [46] propose, in

object-oriented logic programming, to replace non-

monotonous semantics with monotonous semantics where,

by backtracking, one would explore all the definitions

vertically from the subclasses to the superclasses. This

approach is interesting from the point of view of first-order

logic, which is monotonous. However, it poses a major

problem. Indeed, if an inheritance is used to build based on

another class, which supports the idea of monotonous

semantics, it is also used to differentiate behaviors. An entity

is often modeled by a class, saying: my instances will be like

those of such and such a class (inheritance) except for such

and such behavior (differentiation). This last interpretation,

therefore, requires non-monotonous semantics. This

necessity to have a way to reintroduce non-monotonous

semantics of inheritance has led Gandilhon [33] to propose a

new form of cut to prevent the backtracking of definitions in

inherited classes. He calls this cut "cut_inheritance".

Monotonous semantics provides a solution from the

point of view of first-order logic programming. However,

OO-Prolog adopts non-monotonic inheritance semantics

because it is more common in object-oriented programming

languages.

For the design of OO-Prolog, we have retained the non-

monotonous semantics of inheritance for two main reasons:

 because the traditional definition of inheritance

assumes non-monotonic semantics in the composition

of the different inherited classes

 Because it is the most common in object languages

and is necessary in many cases to differentiate the

behavior of objects.

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

4

IV. TECHNIQUES FOR RESOLVING INHERITANCE

CONFLICTS

Inheritance is a mechanism for hierarchical and

deductive information sharing, defined on a set of objects

partially ordered by a specialization relationship. This

deductive aspect is of particular interest here. Each of these

classes has properties (attributes or methods) that are the

inheritance object: the subclasses inherit them from their

superclasses. As a first approximation, these properties have

values (scattered in the inheritance graph) and a name (or

selector).

Multiple inheritances allow more flexible modeling of

an application by avoiding the multiplication of useless

classes. On the other hand, this form of inheritance can

introduce conflicts. The problem of conflicts falls within the

general framework of Fig. 1 taken from [25, 26, 69], where

and are two direct superclasses, both of which have the

property P, each without conflict.

Fig. 1 Primitive scene

There is no universal technique for resolving these kinds

of conflicts, and there are many techniques for resolving

them. Different views on how to resolve them are often

contradictory. In software engineering, the risks of error and

confusion must be avoided at all costs: conflicts are therefore

generally prohibited because they are incompatible with a

programming framework based on rigour and reliability. In

artificial intelligence, multiple inheritances are a natural and

indispensable principle for modeling real-world situations

and entities. We describe below the common techniques [59-

62, 8, 7].

A. Conflict Resolution by Mistake
Error-based conflict resolution occurs when the

semantics consider the collision to be illegal and cause an

error in compiling the inheriting subclass.

B. Conflict Resolution by Equivalence
We speak of conflict resolution by equivalence when the

semantics of language consider the same name introduced by

different classes as referring to the same field.

C. Conflict Resolution by Renaming
Conflict resolution by renaming occurs when the

semantics of the language consider the same name

introduced by different classes as referring to distinct fields

and thus duplicate the renamed components. The expressions

"conflict resolution by duplication" and "conflict resolution

by renaming" are synonymous. The Eiffel language uses this

principle. The program example below shows how this is

done in the Eiffel language (renaming conflicting attributes

and methods) [8].

For example :

 CLASS Problem

 EXPORT origin, priority, ...

 FEATURES ...

 END

 CLASS Document

 EXPORT origin, priority, ...

 FEATURES ...

 END

 CLASS Of_delay

 EXPORT ...

 INHERIT

 problem RENAME origin

AS hazard_manufacturing,

 AS priority priority1 ;

 document RENAME origin

AS programme_fabrication,

 AS priority priority2 ;

 FEATURES .

 END

D. Conflict Resolution by Qualification

We speak of conflict resolution by qualification when the

semantics of language requires that all references to the

selector fully qualify the source of its statement. In C++, for

example, the attribute name includes the name of the

overclass, so references to the name fully qualify the source

of its declaration.

E. Conflict Resolution by Points of View

Here is an object-oriented description of the Computer

with a technical and an accounting interpretation. In the

example below, multiple inheritance conflicts over the

Duration and Priority attributes are handled by viewpoints in

OBJLOG [15, 27, 28].

P P

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

5

Fig. 2 Points of view

Let us imagine the Computer class (see Fig. 2), and this

class inherits the Accounting Service and Computer

Workshop classes. The Accounting Service class will have a

Lifetime attribute (depreciation period), and the Technical

Service class will also have the Lifetime attribute (warranty

period). When you want to access this attribute, you will

have to specify by some means or other if you want to access

its value from a "technical" or "accounting" point of view.

"A point of view is an interpretation of all or part of the data

of a class corresponding to an abstraction of the real world"

[8]. A class may therefore have several points of view. The

sum of these points of view, i.e., the whole class, will be

called perspective. "A perspective is a composite class

representing different interpretations (points of view) of the

same abstraction of the real world" [8].

Languages that resolve multiple inheritance conflicts

based on the decomposition of their classes into viewpoints

will somehow shorten the qualification of the path in a more

intuitive way than languages where all references to the

selector fully qualify the source of its statement (see conflict

resolution by qualification). We will speak of conflict

resolution by points of view when the semantics of the

language use the modeling of perspective classes

decomposed by the delimitation of points of view. This

concept is fundamental in the problem of knowledge

representation [84], where different types of knowledge do

not have the same meaning in different domains of discourse.

The OBJLOG language, for example, defines a mother class

as a point of view for a daughter class. Unlike CLOS, which

resolves possible conflicts using a precedence list, OBJLOG

enshrines the point of view. The conflict resolution algorithm

will reason by difference or equivalence of points of view.

F. Conflict Resolution by a Combination of Methods
The combination of methods aims, when sending a

message, to combine the execution of different methods of

the same object. These methods which have the same

selector are in call conflict. This technique, used in the

FLAVORS system, consists of labelling the methods to

determine a certain sequence. It is the notion of demon that is

used here. In the KEE language, these labels aim at

managing specialization to avoid arbitrary masking of the

method's code (overloading) or, more generally, conflicts in

multiple inheritances [8]. In this case, a parameterization of

the path of the inherited classes is given by the combination.

This principle of method combination is at the basis of the

generic functions introduced in the CLOS language [6, 22,

43]. We speak of conflict resolution by method combination

when the semantics of the language use the notion of method

labeling (daemon) to allow certain chaining. Moreover, the

combination provides a parameterization of the path of the

inherited classes.

G. The Path of the Inheritance Graph
In many languages, inheritance conflicts are resolved by

defining an order in which outliers will be examined to find

the property definition used to respond to a message.

Classically, this is equivalent to defining a total or partial

order in the inheritance graph or in the subgraph whose

source is the instantiation class of the object that receives the

message. If the searched property is located at different

places in the hierarchy, the first-class found by the execution

of the path algorithm will be selected; hence is important to

know the algorithm used during programming to predict the

result. Here the direction of the graph will play a role in

resolving the conflict since it will, to a certain extent, specify

the priorities of the classes. Linear techniques have the major

disadvantage of systematizing the treatment of each conflict

without taking into account the semantics of the properties

involved. As Masini [55] points out, conflict resolution can

only be reliable if it considers the knowledge related to the

application. Systematically applying a default solution

cannot, therefore, correctly resolve each case. Therefore, the

algorithms used in the graph must be taken into account

according to the nature of the problems to be solved [8].

Computer

Attributes
Lifetime
Membership

 ...

Computer

Attributes
Lifetime (warranty) =

Membership =

...

Computer
Attributes

Lifetime (amortization) =

Membership =

...

Computer workshop

 Attributes
Lifetime

 Priority

...

Accounting department

Attributes
Lifetime

 Priority

 ...

Computer

Attributes

Lifetime (point of view=IT workshop)=

Belonging (viewpoint=accounting department)=

Priority (single viewpoint)=1

 ...

computer workshop

5 years. 3 years.

fiscal year 1993

maximum warranty renewal period

depreciation period

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

6

Certain modes of conflict resolution (collisions and repeated

inheritances) prevent this arbitrary choice, dictated by the

chronology of class specialization.

V. INHERITANCE MECHANISMS IN OO-PROLOG

OO-Prolog is one of the many hybrid languages

resulting from work on the integration of object-oriented

programming paradigms and logic programming paradigms

[1-3, 34-36, 38-42, 48-51, 72-80, 85-87, 5, 9, 18, 19, 20, 31,

56, 66, 67, 92]. OO-Prolog supports multiple inheritance

with non-monotonic semantics. To resolve inheritance

conflicts in OO-Prolog, we adopt a solution based on non-

deterministic resolution, the notion of viewpoint and the

concept of full attribute name.

For many common object languages, a default graph

traversal strategy is required. Linear strategies remain, for the

moment at least, the best compromise [55]. For some, they

are currently the only acceptable techniques [69, 25, 26].

However, three reasons lead us to propose a non-linear, non-

deterministic approach for object-oriented logic

programming. As Masini points out, there is probably no

universal, ideal linear strategy that is satisfactory in all cases

[55]. Secondly, linear techniques have the major drawback of

systematizing the treatment of each conflict without taking

into account the semantics of the data involved. Finally, the

possibility offered by Prolog to explore, by backtracking, all

possible alternatives allows, in case of ambiguities, to

consider an object with all its points of view (without any

discrimination). OO-Prolog adopts a dynamic inheritance for

both attributes and methods. However, attribute inheritance

and method inheritance are treated differently.

A. Attribute Inheritance

Fig. 3 Full name of an attribute in OO-Prolog

For the choice of the inheritance model of the OBJLOG

language, Dugerdil, and Chourakihypothesised that the

conflicting attributes do not have the same semantics [15, 27,

28]. We take up some of OBJLOG's ideas and retain this

hypothesis to provide the means to resolve name conflicts

before they arise. In OO-Prolog, attribute name conflicts are

resolved by the concept of full name [29]. If an attribute is

defined in a class, its full name is the term whose functor is

equal to the attribute name and whose only argument is the

definition class. This means that two attributes with the same

name but not having the same origin (definition class) have

different full names and are considered semantically

different. This is the case for the 'department' attributes

defined in the classes #' Employee' and #' Student' (Fig. 3).

As we have already seen, an attribute is represented by a

Prolog term of arity one. Its argument corresponds to the

point of view that determines the interpretation of the

attribute: <name>(<interpretation>)

Each attribute inherited from an overclass, therefore, has

a different interpretation from the others. A class then

inherits all the attributes of its upgrades. Two attributes are

homonymous if they have the same name and if the

intersection of their labels is empty (for example,

department(#'Employee') and department(#' Student') are

homonymous). Conversely, two attributes are different if

their names are different (for example, name(#' Person') and

age(#' Person') are different).

Fig. 4 Interpretation of an attribute

As in OBJLOG, we define a mother class as a point of

view for a daughter class. Thus we can use the inheritance

relation to introduce the notion of disjunctive interpretation

of an attribute at the level of class C, i.e., the set of

interpretations of the attributes of the same name (but not

masked) in the subgraph of C. It corresponds to the set noted

{c1,...,cn}, where ci are classes, maximum lower bounds for

this attribute at the level of class C. In the context of Fig. 4,

the disjunctive interpretation of the 'department' attribute at

class level #' Employee_Student' is {#' Employee',#'

Student'}. The disjunctive interpretation of an attribute at the

level of its definition class is the singleton composed of this

same class. For example, the disjunctive interpretation of the

department attribute at the class level #' Employee' is the

singleton {#'Employee'}. Thus, when the interpretation of an

attribute is a free variable in a method call, it is unified with

each of the elements of the disjunctive interpretation of this

attribute at the current class level. Let O, therefore, be an

instance of the class #' Employee_Student ', having for study

department "La Seine-Maritime" and for work department

"La Haute-Seine". The processing of the following request is

done as follows:

 first, find the disjunctive interpretation of the

"department" attribute at the level of the current

class, here Employee _Student: {#' Employee',#'

Student'},

#'Person'

name(#'Person')

#'Employee’

' Department (#'Employee')

#'Student’

' department(#'Student')

...

... ...

#’Person”

 #’Employee’

.department(#’Employee’)

 #’Student’

#’Employee_Student’

.department(#’Student’)

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

7

 using backtracking, instantiate the variable Int with

each of the elements of this set and calculate the

value of the attribute corresponding to each

interpretation.

We then obtain:

O <- getval(department(Int),Val).

(1) {Int = # 'Employee', Val = La Haute-Seine}

(2) {Int = # 'Student',Val = La Seine-Maritime}

One of its subclasses can be specified as in the following

example. In this case, the attribute's value is calculated in the

same way, considering the disjunctive interpretation of this

attribute at the level of the subclass specified when calling

the method.

O <- getval(department(#'Employee_Student'),Val).

(1) {Val = La Haute-Seine}(2) {Val = The Seine-Maritime}

B. The Inheritance of Methods
Here In this section, we discuss one aspect of inheritance

which is the inheritance of behavior. We are, in the most

general case, that of multiple inheritances. Behavior

inheritance is a synthesis of the consequences of the

inheritance relation at the level of methods; it describes the

evolution of the behavior of classes through user-defined

inheritance links. In OO-Prolog, method inheritance is also

dynamic but managed differently by three complementary

strategies, which can be combined dynamically.

a) The Non-Deterministic Strategy

To consider an object with all its points of view, OO-

Prolog uses a partial order with backtracking in the case of

remaining ambiguities. By default, sending a message

activates all methods in conflict, taking advantage of the

backtracking performed by the Prolog interpreter in his

exhaustive search for solutions to a query.

Fig. 5 Points of view of #’ Albert’

For example, in fig. 5 above, #'Albert' designates an

instance of the class #' Tri-instrumentalist', which itself

inherits three classes: Pianist, #' Violinist', #' Guitarist'. In

each of these classes, the method play_a_score is defined.

If Albert is asked to play a score by sending him the

following message "#' Albert' <- play_a_score", which

instrument will use #' Albert' to play his score?

In a linear approach in which classes are given priority,

Albert will consider the class with the highest priority and

use the instrument corresponding to that class by default.

For example, in CLOS, it will be the Pianist class. In OO-

Prolog, this message is transformed into or logical on the

maximum lower bounds of this method at the level of the

class #' Tri-instrumentalist' ({#' Pianist', #' Violinist', #'

Guitarist'}):

#'Albert' <- (#'Pianist'):play_a score.

or #'Albert' <- (#'Violinist'):play_a score.

or #'Albert' <- (#'Guitarist'):play_a score.

This prevents an arbitrary choice dictated by the

chronology of class specialization and thus prevents the

object from being questioned from all points of view (or in

all its aspects). We can multiply examples of this kind. In

the context of Fig. 6, sending the message department(D) to

the object #' Paul' is equivalent to :

#'Paul' <- department(D) (as #'Employee')

or#'Paul' <- department(D) (as #'Student')

Fig. 6 Student and employee: which department/1

instance O uses at the TTRA level?

Thus, by default, OO-Prolog does not deal with method

inheritance conflicts. Sending a message activates all the

conflicting methods, taking advantage of the feedback

provided by the Prolog interpreter in his exhaustive search

for solutions to a query.

Thus, while in the monotonous approach, backtracking

is used to introduce monotonous inheritance semantics (Fig.

7.a), we use it here to avoid introducing a horizontal order

between classes. This makes it possible to consider an

object with all its points of view without any

discrimination. In classical approaches, a choice is made,

with no possibility of going back. In OO-Prolog,

backtracking allows the application of all conflicting

methods (Fig. 7.b).

#'Person'

#'Pianist' #'Violinist' #'Guitarist'

#'Tri_instrumentalist'

#'Albert'

play_a_score play_a_score play_a_score

#'Student' #'Employee'

#'Employee_Student'

#'TTRA'

 #'Paul'

:department/1 :department/1
:calendar_holidays/1 :calendar_holidays/1

#'Person'

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

8

Fig. 7a Vertical backtracking

Fig. 7b Horizontal backtracking

By default, the general rule is that sending a message

triggers all possible methods, taking advantage of the

feedback provided by the Prolog interpreter in his

exhaustive search for solutions to a query. For example, in

the context of Fig. 6, sending the message department(D) to

the object #' Paul' of the TTRA class is equivalent to or

logical:

#'Paul' <- department(D) (O as Employee)

or

#'Paul' <- department(D) (O as a Student)

And is dealt with by exploring conflicting classes by

backtracking. This strategy is, in our opinion, more general

than a classical non-monotonous linear strategy such as

Pclos, P1, etc. Any solution obtained using such a linear

strategy can also be a solution to this approach. For example,

in the context of Fig. 6, P1 and Pclos consider class #'

Student' as having a higher priority than class #' Employee'.

Therefore, the object will respond to the department(D)

message as a student and eventually return to its study

department.

b) Linear Strategy

A form "O <-- Message" is processed using a predefined

linear extension algorithm. As we have already pointed out,

linear strategies must be taken into account according to the

nature of the problems to be solved. They do not always give

the same result. Therefore, the user must be given the

possibility to introduce his own strategies or use several

existing strategies (Pclos, P1, Pflavors, etc.). The solution

currently adopted in OO-Prolog consists in making available

to the programmer several path strategies that he can use

according to his needs. By default, it is the inversion or P1

route strategy that the system will consider.

O <-- department(D).

{Val = La Haute-Seine}

A simplified version of the inversion algorithm removes

the nodes from the graph to stacking the deep path first,

without masking the nodes already visited: the result,

therefore, contains several occurrences of certain nodes. The

resulting list is then browsed in reverse, removing as it goes

along the elements already encountered at least once. In this

way, only the last occurrence of each element in the initial

list is kept in the final list.

Fig. 8 Example of an inheritance graph

Let us consider the graph in Fig. 8 and calculate the

priority list of o7 using this algorithm. The list provided by

the depth path first is as follows: o7, o4, o1, o5, o2, o1, o6,

o2, o1, o3, o1.

The priority list obtained after removing duplicates is as

follows: o7, o4, o5, o6, o2, o3, o1.

A linear strategy is defined by defining the predicate

lookup(Class, Precedence, LookupName) where Class is

the class at which the graph starts and Precedence is the

precedence list of the Class class. The LookupName

parameter is the name of the strategy. For example:

lookup(Class,Precedence,pclos) :-

% definition of the CLOS strategy.

lookup(Class,Precedence,inversion) :-

% definition of CLOS strategy.

% definition of the strategy by inversion or P1.

Thus, it is possible to define several independent linear

strategies and use them all in the same application. The

choice of a strategy is made by assigning an environment

variable the name of this strategy. The primitive set_lookup

then dynamically sets the strategy to be used:

set_lookup(S), S being the strategy to be set. For example,

if the user defines the strategy of CLOS, to fix it, just

execute the goal:set_lookup(pclos).

Ci

Cj

Ck

:m

:m

:m

Ci

Ck

Cj

C

:m

:m

:m

Cl : m

o1

o2 o3

o4 o5 o6

o7

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

9

The primitive get_lookup(S) unifies variable S with the

name of the current strategy:

get_lookup(X),set_lookup(pclos),get_lookup(Y).

{X = inversion, Y = pclos}

true

set_lookup(pclos),get_lookup(pclos).

{}

true

This assignment is temporary and defeated by

backtracking. Currently, only two linear strategies are

integrated into OO-Prolog. The in-depth course with a

reversal that we have described above. Other strategies

such as PCLOS will soon be available.

c) The Explicit Designation

It consists in explicitly designating a class to which a

method belongs. It is a tool made available to the user and

allows greater control over the inheritance mechanism. By

explicitly designating the class of origin of a property, it is

thus possible to make certain choices "by hand", thanks to

horizontal masking of the other classes. A designation may

be incomplete. This is when the designated class is not

defined in the property but one of its superclasses. In this

case, the basic strategy will be used, starting from the

designated class. The explicit designation is introduced by

the ":"/2 operator:

<(<object><- (<class>):<message>

Still in the context of Fig. 6, the application

O <- (#'Employee'):department(D).

{D = La Haute-Seine}

allows you to consider the object O, a direct instance of

the class #'Employee_Student', as a direct instance of the

class #'Employee' and to hide horizontally the department/1

method defined in the class #'Student'.

1) Explicit Multiple Designations

In OO-Prolog, the explicit designation can be multiple,

i.e. several classes can be designated as follows:

<Object ><- ([class1 >, ...,classen>]):<message >

The following examples give an illustration of this

mechanism.

(1) Using the example in Fig. 5, we can write :

#'Albert' <- ([#'Pianist',#'Guitarist']):play_a score.

(2) In the context of Fig. 9 below, we can write:

D <- ([#'Flying_Bird', #'Swimming_Bird']):mode(Mode).

Fig. 9 Modelling the different points of view of the

duck

Although the designated classes are considered in this

order, it is not of great importance since the result is the same

regardless of the order given. Thus, we can also write :

?- D <- ([#'Swimming_Bird', #'Flying_Bird']):mode(Mode).

This leads to the same result, the only difference being

the order in which the solutions will be rendered: {fly, swim}

in the first case and {swim, fly} in the second.

2) Explicit Designation and Masking

When a class is explicitly designated, a control

mechanism makes it possible to check that the principle of

vertical masking is respected, i.e., that the method sought is

not defined in one of the subclasses of the designated class.

3) Designation and Path of the Inheritance Graph

It is also a means of reducing the complexity of the

methods in the inheritance graph since it consists of making

a jump to the designated class and consequently reducing the

method search graph, thus avoiding unnecessary visits to all

the intermediate classes.

ACKNOWLEDGMENT
The author wishes to thank Habib Abdulrab, Jean-Pierre

Pécuchet, AbdenbiDrissi-Talbi, Mohamed Rezrazi, Fabrice

Sebbe, and all his friends and colleagues for their help and

support. He also wishes to thank Olga, Michel, Marielle, and

Guyriel, who has always been very precious support for the

realization of this work.

REFERENCES
[1] Ait-Kaci, H. & Podelski, A. Towards a Meaning of LIFE. Proc. of the

Third Int'l Conf. on Programming Language Implementation and
Logic Programming, Lectures Notes in Comp. Sciences, Passaü,

Aug. (1991).

[2] Ait-Kaci, H. &Podelski, A. Towards a Meaning of LIFE. Journal of

Logic Programming, 16 (1993) 195-234.

[3] H. A ̈ıt-Kaci, B. Dumant, R. Meyer, A. Podelski, P. Van Roy.

The Wild LIFE Handbook, Paris Research Laboratory,
prepublication edition, March (1994).

[4] V. Alexiev. Mutable Object State for Object-Oriented Logic

Programming: A Survey. Technical Report TR 93-15, Dept. of
Comp. Science, Univ. of Alberta, (1993).

[5] J.M.Andreoli, R.Pareschi, Linear objects: A logic framework for

open system programming, In A. Voronkov, editor, Inter. Conference
on Logic Programming and Automated Reasoning LPAR'92, St.

Petersburg, Russia, 448-450 (1992).

[6] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya
E.Keene, GregorKiczales, and David A. Moon. Common Lisp Object

System Specification, ACM SIGPLAN Notices, (1988).

#'Bird'

#'Flying Bird'
#'Walking Bird'

#'Swimming Bird'

#'Duck'

D

:mode(fly)
:mode(walk)

:mode(swim)

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

10

[7] G. Booch, Object-Oriented Design with applications, The
Benjamin/Cummings Publishing Company, Inc., Redwood City,

California, (1992).

[8] Bouché M., The object approach. concepts and tools., AFNOR, 1994.
[9] Bowen, K.A. et Weinberg, T. A Meta Level Extension of Prolog,

IEEE InttlSymp. on Logic Prog. 'B5 (1985) 48- 53.

[10] Brachman R. J. and Schmolze J. G. An overview of the KL-ONE
Knowledge representation system, Cognitive Science, 9(2) (1985)

171-216.

[11] Cardelli L., A semantics of Multiple Inheritance, LNCS, Springer-
Verlag, 137 (1984) 51-67.

[12] Cardelli L., Type checking Dependent Types and Subtypes, in

Foundations of Logic and Functional Programming Workshop,
LNCS, Springer-Verlag, 306 (1985) 44-57.

[13] Cardoso R., Mariño O., Quintero A., Corrección y completud of the

multi-point classification of TROPES vista, Internal report, Computer
Science department, University of the Andes, Bogotá, (1992).

[14] Capponi C., Chaillot M., Incremental construction of a type-correct

class base, Actes Journée Acquisition-Validation-Apprentissage,

Saint-Raphael, (1993).

[15] Chouraqui E., Dugerdil Ph., Conflict solving in a Frame-like Multiple

Inheritance System, ECAI, Munich, (1988) 226-232.
[16] Clancey W.J., Heuristic Classification, Artificial Intelligence Journal,

27 (4) (1985).

[17] Cruypenninck F., Visualization interface and explanation of
reasoning by classification of complex objects, Thesis of computer

engineer, National Conservatory of Arts and Crafts, CNAM, (1992).
[18] W. Chen and D. S. Warren. Objects as intensions. In Logic

Programming: Proc. 5th Int'l Conf. and Symp., Seattle, WA, USA, 15

19 Aug 1988, pages 404 19. The MIT Press, Cambridge, MA, 1988.
[19] J. Conery. Logical Objects. Proc. of the Fifth Int'l Conf. on Logic

Prog., (1988) 20-443.

[20] Davison, A. A Survey of Logic Programming-based Object-Oriented
Languages. In Research Directions in Concurrent Object-Oriented

Programming. The MIT Press, Cambridge, MA, (1993).

[21] L. Dekker, Frome: multiple representation and classification of
objects with points of view, Doctoral thesis in Applied Sciences,

Under the direction of Gérard Comyn. Supported in (1994) , à Lille 1.

[22] Linda G. DeMichiel and Richard P. Gabriel, The Common Lisp
Object System: An Overview, ECOOP, (1987).

[23] Doma, A. Object-Prolog: Dynamic Object-Oriented Representation

of Knowledge. In T. Henson, editor, SCS Multiconference on
Artificial Intelligence and Simulation: The Diversity of Applications,

pages 83-88, San Diego, CA, Feb. (1988).

[24] O. M. Drews. Classificatory reasoning in a representation with multi-
points of view objects. Interface homme-machine [cs.HC]. Joseph-

Fourier University - Grenoble I, 1993. France. tel-00005133

[25] DUCOURNAU R., HABIB M., The Multiplicity of Inheritance in
Object-Based Languages. TSI, 8(1) (1989), janvier, 41-62.

[26] DUCOURNAU R., Legacies and representations, Memory, Diploma

of Habilitation to direct research, specialty: IT, Montpellier
University II, (1993).

[27] DUGERDIL P., Contribution to the study of object-based knowledge

representation. The OBJLOG language. Thesis from the University of
Aix-Marseille II, (1988).

[28] DUGERDIL P., Inheritance Mechanisms in the OBJLOG language:

Multiple Selective and Multiple Vertical with Points of View in
Inheritance Hierarchies in Knowledge Representation, M.Lenzerini,

D.Nardi and M.Simi (éd.), John Wiley & Sons Ltd., (1991) 245-256.

[29] ESCAMILLA J., JEAN P., Relationships in an Object Knowledge
Representation Model, Proceedings IEEE. 2nd Conference on Tools

for Artificial Intelligence, Washington D.C. USA, (1990) 632-638.

[30] EUZENAT J., Classification dans les représentations par objets :
produits de systèmes classificatoires, Rapport interne, Equipe

SHERPA, INRIA, (1993).

[31] A. A. Fernandes, N. W. Paton, M. H. Williams, A. Bowles.
Approaches to Deductive Object-Oriented Databases, Information

and Software Technology, 34(12) (1992) 787–803.

[32] Gallaire, H. Merging Objects and Logic Programming: Relational
Semantics, Performance, and Standardization. In Proc. AAAI'86,

Philadelphia, Pennsylvania, (1986) 754-758.

[33] Gandilhon T. Proposal for a minimal object extension for Prolog.,
Proceedings of the Logical Programming Seminar, Trégastel (mai

1987) 483-506.

[34] Gandriau, M. CIEL: classes and instances in logic. Doctoral thesis,
ENSEEIHT (1988) 151.

[35] Gloess, P.Y. Contribution to the optimization of reasoning

mechanism in specialized knowledge representation structures. State
thesis, Univ. of TechnWorld Logie of Compiegne, January. (1990).

[36] Gloess, P.Y. M. Oros, C.M. LI, U-Log3 = DataLog + Constraints,

(Prototype) Actes des JFPL95, Dijon (France), 369-372.
[37] Goldberg, A. and Robson, D. Smalltalk-80: The language and its

implementation. Addison-Wesley, (1983).

[38] J. Grant and T. K. Sellis. Extended database logic. Complex objects
and deduction. Information Sciences, 52(1) (1990) 85 110.

[39] Ishikawa, Y. etTokoro, M. Orient84/K: An Object Oriented

Concurrent Programming Language for Knowledge Representation,

Object-Oriented Concurrent Programming (1987), W 159 198.

[40] R. Iwanaga and O. Nakazawa. Development of the object-oriented

logic programming language CESP. Oki Technical Review, 58(142)
(1991) 39 44.

[41] R. Jungclaus. Logic-Based Modeling of Dynamic Object Systems.

Ph.D. thesis, Technical University Braunschweig, Germany, (1993).
[42] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow.

VULCAN: Logical concurrent objects. In B. Shriver and P. Wegner,
editors, Research Directions in Object-Oriented Programming, pages

75 112, Cambridge, MA, 1987. MIT Press. (Also Chap. 30 in [86a])

[43] Sonja E. Keene, Object-Oriented Programming in Common Lisp: a
Programmer’s Guide to CLOS, Addison-Wesley, (1989).

[44] Kowalski, R. Algorithm = Logic + Control, Comm. ACM 22, 7

(1979) 424-436.
[45] Kowalski, R. Logic for problem solving. North-Holland, Amsterdam,

(1979).

[46] L. Leonardi and P. Mello, Combining logic- and object-oriented
programming language paradigms, in Proceedings of the Twenty-

First Annual Hawaii International Conference on System Sciences.

Volume II: Software track, Kailua-Kona, HI, USA, (1988) 376-385.
doi: 10.1109/HICSS.1988.11828

[47] Prolog++ toolkit is an expressive and powerful object-oriented

programming system that combines the best of AI and OOPs. 47.
http://www.lpa.co.uk/ppp.htm

[48] Malenfant, J. ObjVProlog-V: a uniform model of metaclasses, classes

and Instances suitable for logic programming, Montreal university,
Dep. I.R.O., Pap. from Pech. 671 (January 1989) 58.

[49] J. Malenfant, G. Lapalme, and J. Vaucher. OBJVPROLOG:

Metaclasses in logic. In S. Cook, editor, European Conference on
Object-Oriented Programming (ECOOP'89), Nottingham, UK, (1989)

257-269.

[50] Malenfant, J. Design and implementation of a programming
language integrating three paradigms: logic programming, object-

based programming and distributed programming . PhD thesis,

University of Montreal, March (1990).
[51] P. Mancarella, A. Raffaetà, et F. Turini LOO: An Object-Oriented

Logic Programming Language . Proceedings of the 1995 Joint

GULP-PRODE Conference on Declarative Programming (MI Sessa
et M. AlpuenteFrasnedo, eds), (1995) 271-282.

[52] MARIÑO O., Classification of objects in a multi-point of view

model, DEA report in computer science , INPG, Grenoble, (1989).
[53] MARIÑO O., RECHENMANN F., UVIETTA P. Multiple

perspectives and classification mechanism in object-oriented

representation, 9th ECAI, Stockholm (1990) 425-430.
[54] MARIÑO O., Classification of composite objects in a multi-

viewpoint knowledge representation system, RFIA’91, Lyon-

Villeurbanne, (1991) 233-242.
[55] MASINI G., NAPOLI A. COLNET D. LEONARD D., TOMBRE K.,

object languages. Inter-editions, Paris, (1989).

[56] F. G. McCabe. Logic&Objects. International Series in Computer
Science. Prentice-Hall, (1992).

Macaire Ngomo / IJCTT, 69(10), 1-11, 2021

11

[57] MAC GREGOR R.M., BURSTEIN M.H. Using a Description
Classifier to Enhance Knowledge Representation, IEEE Expert

Intelligent Systems, and Applications, juin, (1991).

[58] MAC GREGOR R.M., BRILL D., Recognition Algorithms for the
LOOM Classifier, AAAI, San José, CA, Juillet, (1992) 774-779.

[59] Meyer B. Eiffel: Programming for reusability and extendibility.,

ACM SIGPLAN Notices, 22(2) (1987) 85-94.
[60] B. Meyer, Reusability: The Case for object-oriented Design,

IEEESoftware 4, 2 (1987) 50-64.

[61] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
New York, (1988).

[62] Meyer B. Design and programming by objects, for quality software

engineering, Inter Editions, Paris (1990).
[63] Alexei A. Morozov, Actor Prolog: An object-oriented language with

the classical declarative semantics, In Sagonas K, Tarau P, eds. Proc

IDL Workshop, Paris, France: (1999) 39-53. Source:
http://www.cplire.ru/Lab144/paris.pdf.

[64] Alexei A. Morozov, Actor Prolog: an object-oriented language with

the classical declarative semantics, ResearchGate, (2001)

(https://www.researchgate.net/scientific-

contributions/28317372_Alexey_A_Morozov)

[65] Alexei A. Morozov, Olga Sushkova, Development of Agent Logic
Programming Means for Heterogeneous Multichannel Intelligent

Visual Surveillance, Proceedings of the 16th Ibero-American

Conference on AI, Trujillo, Peru, 13-16 (2018).
[66] Moss C., Prolog++: The Power of Object-Oriented and Logic

Programming, Addison-Wesley, (1994).
[67] P. Moura. Logtalk Object-oriented Programming in Prolog. Centre

for Informatics and Systems, University of Coimbra, Coimbra,

Portugal, (1999). (http://www.ci.uc.pt/logtalk/logtalk.html).
[68] A. Napoli, Object representations and reasoning by classification in

artificial intelligence, Doctoral thesis in Computer Science. Defended

in 1992, CRIN - Computer Science Research Center of Nancy,
France.

[69] NAPOLI A., DUCOURNAU R., Subsumption in Object-Based

Representations, Proceedings ERCIM Workshop on theoretical and
practical aspects of knowledge representation, (rapport ERCIM 92-

W001), Pisa (IT) 1-9 (1992).

[70] NEBEL B., Reasoning and Revision in Hybrid Representation
Systems, Lecture Notes in Artificial Intelligence, LNCS, Springer-

Verlag, Berlin, 422(1990).

[71] NEWELL A., The Knowledge Level, Artificial Intelligence, 2(2)
(1981) 1-20.

[72] Ngomo M., Pécuchet J-P. & Drissi-Talbi A. A declarative and non-

deterministic approach to logic programming by mutable objects.
Proceedings of the 4th Francophone Days of Logical Programming

and Study Days Constraint programming and industrial applications,

Prototype JFPLC'95, , Dijon, France (1995) 391-396.
[73] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A. Managing multiple

inheritance in ObjTL. RPO’95 in the Proceedings of the 15th Days

Internationales IA’95,(1995) 261-270, Montpellier, France.
[74] Ngomo M., Pécuchet J-P., Drissi-Talbi A. Integration of logic

programming and object-oriented programming paradigms: a

declarative and non-deterministic approach. Proceedings of the 2nd
Biennial Congress of the French Association for Information and

Systems Sciences and Technologies, AFCET - Object Technology -

95, Toulouse, (1995) 85-94.
[75] Ngomo M. Integration of logic programming and object-based

programming: study, design and implementation. Computer Science

Doctoral Thesis, University of Rouen - INSA Rouen, December
(1996).

[76] Macaire Ngomo and Habib Abdulrab, A declarative approach of

dynamic logic objects, International Journal of Engineering
Sciences& Research Technology (IJESRT), ISSN: 2277-9655, 7(4)

(2018) 764-785, DOI: 10.5281/zenodo.1228893

[77] Macaire Ngomo and Habib Abdulrab, A Declarative Approach of
Dynamic Logic Objects, International Research Journal of Advanced

Engineering and Science (IRJAES), ISSN: 2455-9024, 3(2) (2018)

101-115.
[78] Macaire Ngomo and Habib Abdulrab, A full declarative approach of

dynamic logic objects, International Journal of Current Research in

Life Sciences (IJCRL), ISSN: 2319-9490, 07(05) (2018) 2036-2051.
[79] Macaire Ngomo and Habib Abdulrab, Modelling And

Implementation Of Dynamic Logic Objects In The Complete

Declarative Approach', Global Journal of Engineering Science and
Research Management (GJES), ISSN 2349-4506, 77-785, 25(4):

April 2018, DOI: 10.5281/zenodo.1238633

[80] D. Pountain. Adding Objects to Prolog, Byte, 15(8), 1990.
[81] QUINTERO A., Parallelization of object classification in a multi-

viewpoint knowledge model, Computer science thesis, Joseph

Fourier University, Grenoble, juin (1993).
[82] ROSSAZZA Jean-Paul, Use of fuzzy class hierarchies for the

representation of imprecise knowledge subject to exceptions: the

SORCIER system, Computer science thesis, Paul Sabatier University

of Toulouse, (1990).

[83] SCHMOLZE J.G., LIPKIS T.A, Classification in the KL-ONE

Knowledge Representation System, in Proceedings of the 8th. IJCAI,
Karlsruhe, Germany, (1983).

[84] VOGEL C., Génie Cognitif, Collection Sciences cognitives,

MASSON, PAris, 97 (1988).
[85] Shapiro, E. Concurrent Prolog: A progress report. IEEE Computer

19, (1986) 44-58. (Also Chap. 5 in)
[86] E. Shapiro, (Ed.), Concurrent Prolog, 1&2(1987), MIT Press.

[87] E. Shapiro, The family of Concurrent logic programming languages,

Technical Report CS89-08, Depart. of Applied Mathematics and
Computer Science, The Wietzmann Institute, Rehovot, (1989).

[88] SICStus Prolog, state-of-the-art, ISO standard compliant, Prolog

development system. https://sicstus.sics.se/
[89] Steele G. L. Common Lisp: the language, second edition, Digital

Press, (1990).

[90] Sterling, L. et Shapiro, E. L'Art de Prolog. MASSON (1990).
[91] SWI-Prolog for (sémantic) web, (2017).

[92] T. Uustalu. Combining object-oriented and logic paradigms: A model

logic programming approach. In O. L. Madsen, editor, European
Conference on Object-Oriented Programming (ECOOP'92), (1992)

98-113.

[93] WEGNER, P., The Object-Oriented Classification Paradigm, Dans
Research Directions in Object-Oriented Programming, Bruce Shiver,

Peter Wegner (éd.), The MIT Press, Cambridge, MA, (1987).

[94] Zaniolo, C. Object-Oriented Programming in Prolog. In Proc. of the
IEEE International Symposium on Logic Programming, (1984) 265-

270, Atlantic City, New Jersey.

[95] F. Rechenmann, A. Bensaid et D. Granier. SHIRKA: object-
centered expert systems. Proceedings 4th international days on

expert systems and their applications, mimeographed acts, Avignon,

FR, (1984).
[96] F. Rechenmann et M.-S. Doize. SAFIR-SHIRKA: an object-

centered knowledge-based system for financial analysis. Proceedings

7th international days on expert systems and their applications,
Avignon, FR, (1987) 949-967.

[97] F. Rechenmann, P. Fontanille et P. Uvietta. S H I R K A: user

manual. Internal report, INRIA — ARTEMIS Laboratory, Grenoble,
FR, (1988).

[98] P. Barras, J. Blum, J.-C. Paumier, F. Rechenmann et P.

Witomski. EVE: an object-centered knowledge-based PDE solver.
Dans J. Rice, R. Vichnevetsky (éds.). Actes 2nd international

conference on expert systems for numerical computing. rapport de

recherché CSD-TR-963, Purdueuniversity, West-Lafayette, IN US,
(1990) 1-3.

